
Ypy
Release 0.5.5

Kevin Jahns, Bartosz Sypytkowski, John Waidhofer

Sep 13, 2023

CONTENTS:

1 Installation 3

2 Tutorial 5

3 API Reference 7
3.1 y_py . 7

4 Indices and tables 27

Python Module Index 29

Index 31

i

ii

Ypy, Release 0.5.5

Ypy is a high-performance CRDT that allows Python developers to easily synchronize state between processes. It is
built on top of Y-CRDT: a powerful distributed data type library written in Rust. With Ypy, developers can make
robust, eventually consistent applications that share state between users. All changes are automatically resolved across
application instances, so your code can focus on representing state instead of synchronizing it. This shared state can go
beyond Python programs, interfacing to web applications backed by Y-Wasm. This allows for seamless communication
between frontend user interfaces and Python application logic.

CONTENTS: 1

Ypy, Release 0.5.5

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

You can install Ypy from PyPI:

pip install y-py

Or from conda:

conda install -c conda-forge y-py

3

Ypy, Release 0.5.5

4 Chapter 1. Installation

CHAPTER

TWO

TUTORIAL

Each user working with Ypy data can read and update information through a shared document instance. Anything
added to the document will be tracked and synchronized across all document instances. These documents can hold
common data types, including numbers, booleans, strings, lists, dictionaries, and XML trees. Modifying the document
state is done inside a transaction for robustness and thread safety. With these building blocks, you can safely share data
between users. Here is a basic hello world example:

import y_py as Y

d1 = Y.YDoc()
Create a new YText object in the YDoc
text = d1.get_text('test')
Start a transaction in order to update the text
with d1.begin_transaction() as txn:

Add text contents
text.extend(txn, "hello world!")

Create another document
d2 = Y.YDoc()
Share state with the original document
state_vector = Y.encode_state_vector(d2)
diff = Y.encode_state_as_update(d1, state_vector)
Y.apply_update(d2, diff)

value = str(d2.get_text('test'))

assert value == "hello world!"

5

Ypy, Release 0.5.5

6 Chapter 2. Tutorial

CHAPTER

THREE

API REFERENCE

This page contains auto-generated API reference documentation1.

3.1 y_py

3.1.1 Module Contents

1 Created with sphinx-autoapi

7

https://github.com/readthedocs/sphinx-autoapi

Ypy, Release 0.5.5

Classes

SubscriptionId Tracks an observer callback. Pass this to the unobserve
method to cancel

YDoc A Ypy document type. Documents are most important
units of collaborative resources management.

AfterTransactionEvent Holds transaction update information from a commit af-
ter state vectors have been compressed.

YTransaction A transaction that serves as a proxy to document block
store. Ypy shared data types execute

YText A shared data type used for collaborative text editing. It
enables multiple users to add and

YTextEvent Communicates updates that occurred during a transac-
tion for an instance of YText.

YTextChangeInsert

YTextChangeDelete

YTextChangeRetain

YArray

YArrayEvent Communicates updates that occurred during a transac-
tion for an instance of YArray.

ArrayChangeInsert Update message that elements were inserted in a YArray.
ArrayChangeDelete Update message that elements were deleted in a YArray.
ArrayChangeRetain Update message that elements were left unmodified in a

YArray.
YMap

YMapItemsView Tracks key/values inside a YMap. Similar functionality
to dict_items for a Python dict

YMapKeysView Tracks key identifiers inside of a YMap
YMapValuesView Tracks values inside of a YMap
YMapEvent Communicates updates that occurred during a transac-

tion for an instance of YMap.
YMapEventKeyChange

YXmlElementEvent

YXmlElement XML element data type. It represents an XML node,
which can contain key-value attributes

YXmlText

YXmlTextEvent

8 Chapter 3. API Reference

Ypy, Release 0.5.5

Functions

encode_state_vector(→ EncodedStateVector) Encodes a state vector of a given Ypy document into its
binary representation using lib0 v1

encode_state_as_update(→ YDocUpdate) Encodes all updates that have happened since a given
version vector into a compact delta

apply_update(doc, diff) Applies delta update generated by the remote document
replica to a current document. This

Attributes

Event

EncodedStateVector

EncodedDeleteSet

YDocUpdate

YTextDelta

YArrayObserver

ArrayDelta A modification to a YArray during a transaction.
YXmlAttributes Generates a sequence of key/value properties for an

XML Element
Xml

YXmlTreeWalker Visits elements in an Xml tree
EntryChange

class y_py.SubscriptionId

Tracks an observer callback. Pass this to the unobserve method to cancel its associated callback.

y_py.Event

class y_py.YDoc(client_id: Optional[int] = None, offset_kind: str = 'utf8', skip_gc: bool = False)
A Ypy document type. Documents are most important units of collaborative resources management. All shared
collections live within a scope of their corresponding documents. All updates are generated on per document
basis (rather than individual shared type). All operations on shared collections happen via YTransaction, which
lifetime is also bound to a document.

Document manages so called root types, which are top-level shared types definitions (as opposed to recursively
nested types).

Example:

from y_py import YDoc

doc = YDoc()
(continues on next page)

3.1. y_py 9

Ypy, Release 0.5.5

(continued from previous page)

with doc.begin_transaction() as txn:
text = txn.get_text('name')
text.extend(txn, 'hello world')

print(str(text))

client_id: int

begin_transaction()→ YTransaction

Returns
A new transaction for this document. Ypy shared data types execute their operations in a
context of a given transaction. Each document can have only one active transaction at the
time - subsequent attempts will cause exception to be thrown.

Transactions started with doc.begin_transaction can be released by deleting the transaction object method.

Example:

from y_py import YDoc
doc = YDoc()
text = doc.get_text('name')
with doc.begin_transaction() as txn:

text.insert(txn, 0, 'hello world')

transact(callback: Callable[[YTransaction]])

get_map(name: str)→ YMap

Returns
A YMap shared data type, that’s accessible for subsequent accesses using given name.

If there was no instance with this name before, it will be created and then returned.

If there was an instance with this name, but it was of different type, it will be projected onto YMap instance.

get_xml_element(name: str)→ YXmlElement

Returns
A YXmlElement shared data type, that’s accessible for subsequent accesses using given name.

If there was no instance with this name before, it will be created and then returned.

If there was an instance with this name, but it was of different type, it will be projected onto YXmlElement
instance.

get_xml_text(name: str)→ YXmlText

Returns
A YXmlText shared data type, that’s accessible for subsequent accesses using given name.

If there was no instance with this name before, it will be created and then returned.

If there was an instance with this name, but it was of different type, it will be projected onto YXmlText
instance.

get_array(name: str)→ YArray

Returns
A YArray shared data type, that’s accessible for subsequent accesses using given name.

10 Chapter 3. API Reference

Ypy, Release 0.5.5

If there was no instance with this name before, it will be created and then returned.

If there was an instance with this name, but it was of different type, it will be projected onto YArray instance.

get_text(name: str)→ YText

Parameters
name – The identifier for retreiving the text

Returns
A YText shared data type, that’s accessible for subsequent accesses using given name.

If there was no instance with this name before, it will be created and then returned. If there was an instance
with this name, but it was of different type, it will be projected onto YText instance.

observe_after_transaction(callback: Callable[[AfterTransactionEvent]])→ SubscriptionId
Subscribe callback function to updates on the YDoc. The callback will receive encoded state updates and
deletions when a document transaction is committed.

Parameters
callback – A function that receives YDoc state information affected by the transaction.

Returns
A subscription identifier that can be used to cancel the callback.

y_py.EncodedStateVector

y_py.EncodedDeleteSet

y_py.YDocUpdate

class y_py.AfterTransactionEvent

Holds transaction update information from a commit after state vectors have been compressed.

before_state: EncodedStateVector

Encoded state of YDoc before the transaction.

after_state: EncodedStateVector

Encoded state of the YDoc after the transaction.

delete_set: EncodedDeleteSet

Elements deleted by the associated transaction.

get_update()→ YDocUpdate

Returns
Encoded payload of all updates produced by the transaction.

y_py.encode_state_vector(doc: YDoc)→ EncodedStateVector
Encodes a state vector of a given Ypy document into its binary representation using lib0 v1 encoding. State
vector is a compact representation of updates performed on a given document and can be used by en-
code_state_as_update on remote peer to generate a delta update payload to synchronize changes between peers.

Example:

from y_py import YDoc, encode_state_vector, encode_state_as_update, apply_update␣
→˓from y_py

document on machine A
local_doc = YDoc()

(continues on next page)

3.1. y_py 11

Ypy, Release 0.5.5

(continued from previous page)

local_sv = encode_state_vector(local_doc)

document on machine B
remote_doc = YDoc()
remote_delta = encode_state_as_update(remote_doc, local_sv)

apply_update(local_doc, remote_delta)

y_py.encode_state_as_update(doc: YDoc, vector: Optional[Union[EncodedStateVector, List[int]]] = None)
→ YDocUpdate

Encodes all updates that have happened since a given version vector into a compact delta representation using
lib0 v1 encoding. If vector parameter has not been provided, generated delta payload will contain all changes of
a current Ypy document, working effectively as its state snapshot.

Example:

from y_py import YDoc, encode_state_vector, encode_state_as_update, apply_update

document on machine A
local_doc = YDoc()
local_sv = encode_state_vector(local_doc)

document on machine B
remote_doc = YDoc()
remote_delta = encode_state_as_update(remote_doc, local_sv)

apply_update(local_doc, remote_delta)

y_py.apply_update(doc: YDoc, diff: Union[YDocUpdate, List[int]])
Applies delta update generated by the remote document replica to a current document. This method assumes
that a payload maintains lib0 v1 encoding format.

Example:

from y_py import YDoc, encode_state_vector, encode_state_as_update, apply_update

document on machine A
local_doc = YDoc()
local_sv = encode_state_vector(local_doc)

document on machine B
remote_doc = YDoc()
remote_delta = encode_state_as_update(remote_doc, local_sv)

apply_update(local_doc, remote_delta)

class y_py.YTransaction

A transaction that serves as a proxy to document block store. Ypy shared data types execute their operations in
a context of a given transaction. Each document can have only one active transaction at the time - subsequent
attempts will cause exception to be thrown.

Transactions started with doc.begin_transaction can be released by deleting the transaction object method.

Example:

12 Chapter 3. API Reference

Ypy, Release 0.5.5

from y_py import YDoc
doc = YDoc()
text = doc.get_text('name')
with doc.begin_transaction() as txn:

text.insert(txn, 0, 'hello world')

before_state: Dict[int, int]

get_text(name: str)→ YText

Returns
A YText shared data type, that’s accessible for subsequent accesses using given name.

If there was no instance with this name before, it will be created and then returned.

If there was an instance with this name, but it was of different type, it will be projected onto YText instance.

get_array(name: str)→ YArray

Returns
A YArray shared data type, that’s accessible for subsequent accesses using given name.

If there was no instance with this name before, it will be created and then returned.

If there was an instance with this name, but it was of different type, it will be projected onto YArray instance.

get_map(name: str)→ YMap

Returns
A YMap shared data type, that’s accessible for subsequent accesses using given name.

If there was no instance with this name before, it will be created and then returned.

If there was an instance with this name, but it was of different type, it will be projected onto YMap instance.

commit()

Triggers a post-update series of operations without `free`ing the transaction. This includes compaction
and optimization of internal representation of updates, triggering events etc. Ypy transactions are auto-
committed when they are `free`d.

state_vector_v1()→ EncodedStateVector
Encodes a state vector of a given transaction document into its binary representation using lib0 v1 encoding.
State vector is a compact representation of updates performed on a given document and can be used by
encode_state_as_update on remote peer to generate a delta update payload to synchronize changes between
peers.

Example:

from y_py import YDoc

document on machine A
local_doc = YDoc()
local_txn = local_doc.begin_transaction()

document on machine B
remote_doc = YDoc()
remote_txn = local_doc.begin_transaction()

try:
(continues on next page)

3.1. y_py 13

Ypy, Release 0.5.5

(continued from previous page)

local_sv = local_txn.state_vector_v1()
remote_delta = remote_txn.diff_v1(local_sv)
local_txn.apply_v1(remote_delta)

finally:
del local_txn
del remote_txn

diff_v1(vector: Optional[EncodedStateVector] = None)→ YDocUpdate
Encodes all updates that have happened since a given version vector into a compact delta representation
using lib0 v1 encoding. If vector parameter has not been provided, generated delta payload will contain all
changes of a current Ypy document, working effectively as its state snapshot.

Example:

from y_py import YDoc

document on machine A
local_doc = YDoc()
local_txn = local_doc.begin_transaction()

document on machine B
remote_doc = YDoc()
remote_txn = local_doc.begin_transaction()

try:
local_sv = local_txn.state_vector_v1()
remote_delta = remote_txn.diff_v1(local_sv)
local_txn.apply_v1(remote_delta)

finally:
del local_txn
del remote_txn

apply_v1(diff: YDocUpdate)
Applies delta update generated by the remote document replica to a current transaction’s document. This
method assumes that a payload maintains lib0 v1 encoding format.

Example:

from y_py import YDoc

document on machine A
local_doc = YDoc()
local_txn = local_doc.begin_transaction()

document on machine B
remote_doc = YDoc()
remote_txn = local_doc.begin_transaction()

try:
local_sv = local_txn.state_vector_v1()
remote_delta = remote_txn.diff_v1(local_sv)
local_txn.apply_v1(remote_delta)

finally:
(continues on next page)

14 Chapter 3. API Reference

Ypy, Release 0.5.5

(continued from previous page)

del local_txn
del remote_txn

__enter__()→ YTransaction

__exit__()→ bool

class y_py.YText(init: str = '')
A shared data type used for collaborative text editing. It enables multiple users to add and remove chunks of text
in efficient manner. This type is internally represented as able double-linked list of text chunks - an optimization
occurs during YTransaction.commit, which allows to squash multiple consecutively inserted characters together
as a single chunk of text even between transaction boundaries in order to preserve more efficient memory model.

YText structure internally uses UTF-8 encoding and its length is described in a number of bytes rather than
individual characters (a single UTF-8 code point can consist of many bytes).

Like all Yrs shared data types, YText is resistant to the problem of interleaving (situation when characters inserted
one after another may interleave with other peers concurrent inserts after merging all updates together). In case
of Yrs conflict resolution is solved by using unique document id to determine correct and consistent ordering.

prelim: bool

True if this element has not been integrated into a YDoc.

__str__()→ str

Returns
The underlying shared string stored in this data type.

__repr__()→ str

Returns
The string representation wrapped in ‘YText()’

__len__()→ int

Returns
The length of an underlying string stored in this YText instance, understood as a number of
UTF-8 encoded bytes.

to_json()→ str

Returns
The underlying shared string stored in this data type.

insert(txn: YTransaction, index: int, chunk: str, attributes: Dict[str, Any] = {})
Inserts a string of text into the YText instance starting at a given index. Attributes are optional style modifiers
({“bold”: True}) that can be attached to the inserted string. Attributes are only supported for a YText
instance which already has been integrated into document store.

insert_embed(txn: YTransaction, index: int, embed: Any, attributes: Dict[str, Any] = {})
Inserts embedded content into the YText at the provided index. Attributes are user-defined metadata asso-
ciated with the embedded content. Attributes are only supported for a YText instance which already has
been integrated into document store.

format(txn: YTransaction, index: int, length: int, attributes: Dict[str, Any])
Wraps an existing piece of text within a range described by index-length parameters with formatting blocks
containing provided attributes metadata. This method only works for YText instances that already have
been integrated into document store

3.1. y_py 15

Ypy, Release 0.5.5

extend(txn: YTransaction, chunk: str)
Appends a given chunk of text at the end of current YText instance.

delete(txn: YTransaction, index: int)
Deletes the character at the specified index.

delete_range(txn: YTransaction, index: int, length: int)
Deletes a specified range of of characters, starting at a given index. Both index and length are counted in
terms of a number of UTF-8 character bytes.

observe(f: Callable[[YTextEvent]])→ SubscriptionId
Assigns a callback function to listen to YText updates.

Parameters
f – Callback function that runs when the text object receives an update.

Returns
A reference to the callback subscription.

observe_deep(f: Callable[[List[Event]]])→ SubscriptionId
Assigns a callback function to listen to the updates of the YText instance and those of its nested attributes.
Currently, this listens to the same events as YText.observe, but in the future this will also listen to the events
of embedded values.

Parameters
f – Callback function that runs when the text object or its nested attributes receive an update.

Returns
A reference to the callback subscription.

unobserve(subscription_id: SubscriptionId)
Cancels the observer callback associated with the subscripton_id.

Parameters
subscription_id – reference to a subscription provided by the observe method.

class y_py.YTextEvent

Communicates updates that occurred during a transaction for an instance of YText. The target references the
YText element that receives the update. The delta is a list of updates applied by the transaction.

target: YText

delta: List[YTextDelta]

path()→ List[Union[int, str]]

Returns
Array of keys and indexes creating a path from root type down to current instance of shared
type (accessible via target getter).

y_py.YTextDelta

class y_py.YTextChangeInsert

Bases: TypedDict

insert: str

attributes: Optional[Any]

16 Chapter 3. API Reference

Ypy, Release 0.5.5

class y_py.YTextChangeDelete

Bases: TypedDict

delete: int

class y_py.YTextChangeRetain

Bases: TypedDict

retain: int

attributes: Optional[Any]

class y_py.YArray

prelim: bool

True if this element has not been integrated into a YDoc.

__len__()→ int

Returns
Number of elements in the YArray

__str__()→ str

Returns
The string representation of YArray

__repr__()→ str

Returns
The string representation of YArray wrapped in YArray()

to_json()→ str
Converts an underlying contents of this YArray instance into their JSON representation.

insert(txn: YTransaction, index: int, item: Any)
Inserts an item at the provided index in the YArray.

insert_range(txn: YTransaction, index: int, items: Iterable)
Inserts a given range of items into this YArray instance, starting at given index.

append(txn: YTransaction, item: Any)
Adds a single item to the end of the YArray

extend(txn: YTransaction, items: Iterable)
Appends a sequence of items at the end of this YArray instance.

delete(txn: YTransaction, index: int)
Deletes a single item from the array

Parameters
• txn – The transaction where the array is being modified.

• index – The index of the element to be deleted.

delete_range(txn: YTransaction, index: int, length: int)
Deletes a range of items of given length from current YArray instance, starting from given index.

3.1. y_py 17

Ypy, Release 0.5.5

move_to(txn: YTransaction, source: int, target: int)
Moves a single item found at source index into target index position.

Parameters
• txn – The transaction where the array is being modified.

• source – The index of the element to be moved.

• target – The new position of the element.

move_range_to(txn: YTransaction, start: int, end: int, target: int)
Moves all elements found within start..`end` indexes range (both side inclusive) into new position pointed
by target index. All elements inserted concurrently by other peers inside of moved range will be moved as
well after synchronization (although it make take more than one sync roundtrip to achieve convergence).

Parameters
• txn – The transaction where the array is being modified.

• start – The index of the first element of the range (inclusive).

• end – The index of the last element of the range (inclusive).

• target – The new position of the element.

Example: ``` import y_py as Y doc = Y.Doc(); array = doc.get_array(‘array’)

with doc.begin_transaction() as t:
array.insert_range(t, 0, [1,2,3,4]);

// move elements 2 and 3 after the 4 with doc.begin_transaction() as t:

array.move_range_to(t, 1, 2, 4);

```
__getitem__(index: Union[int, slice])→ Any

Returns
The element stored under given index or a new list of elements from the slice range.

__iter__()→ Iterator

Returns
An iterator that can be used to traverse over the values stored withing this instance of YArray.

Example:

from y_py import YDoc

# document on machine A
doc = YDoc()
array = doc.get_array('name')

for item in array:
print(item)

observe(f: Callable[[YArrayEvent]])→ SubscriptionId
Assigns a callback function to listen to YArray updates.

Parameters
f – Callback function that runs when the array object receives an update.

18 Chapter 3. API Reference



Ypy, Release 0.5.5

Returns
An identifier associated with the callback subscription.

observe_deep(f: Callable[[List[Event]]])→ SubscriptionId
Assigns a callback function to listen to the aggregated updates of the YArray and its child elements.

Parameters
f – Callback function that runs when the array object or components receive an update.

Returns
An identifier associated with the callback subscription.

unobserve(subscription_id: SubscriptionId)
Cancels the observer callback associated with the subscripton_id.

Parameters
subscription_id – reference to a subscription provided by the observe method.

y_py.YArrayObserver

class y_py.YArrayEvent

Communicates updates that occurred during a transaction for an instance of YArray. The target references the
YArray element that receives the update. The delta is a list of updates applied by the transaction.

target: YArray

delta: List[ArrayDelta]

path()→ List[Union[int, str]]

Returns
Array of keys and indexes creating a path from root type down to current instance of shared
type (accessible via target getter).

y_py.ArrayDelta

A modification to a YArray during a transaction.

class y_py.ArrayChangeInsert

Bases: TypedDict

Update message that elements were inserted in a YArray.

insert: List[Any]

class y_py.ArrayChangeDelete

Update message that elements were deleted in a YArray.

delete: int

class y_py.ArrayChangeRetain

Update message that elements were left unmodified in a YArray.

retain: int

class y_py.YMap

prelim: bool

True if this element has not been integrated into a YDoc.

3.1. y_py 19



Ypy, Release 0.5.5

__len__()→ int

Returns
The number of entries stored within this instance of YMap.

__str__()→ str

Returns
The string representation of the YMap.

__dict__()→ dict

Returns
Contents of the YMap inside a Python dictionary.

__repr__()→ str

Returns
The string representation of the YMap wrapped in ‘YMap()’

to_json()→ str
Converts contents of this YMap instance into a JSON representation.

set(txn: YTransaction, key: str, value: Any)
Sets a given key-value entry within this instance of YMap. If another entry was already stored under given
key, it will be overridden with new value.

update(txn: YTransaction, items: Union[Iterable[Tuple[str, Any]], Dict[str, Any]])
Updates YMap with the contents of items.

Parameters
• txn – A transaction to perform the insertion updates.

• items – An iterable object that produces key value tuples to insert into the YMap

pop(txn: YTransaction, key: str, fallback: Optional[Any] = None)→ Any
Removes an entry identified by a given key from this instance of YMap, if such exists. Throws a KeyError
if the key does not exist and fallback value is not provided.

Parameters
• txn – The current transaction from a YDoc.

• key – Identifier of the requested item.

• fallback – Returns this value if the key doesn’t exist in the YMap

Returns
The item at the key.

get(key: str, fallback: Any)→ Any | None

Parameters
• key – The identifier for the requested data.

• fallback – If the key doesn’t exist in the map, this fallback value will be returned.

Returns
Requested data or the provided fallback value.

20 Chapter 3. API Reference



Ypy, Release 0.5.5

__getitem__(key: str)→ Any

Parameters
key – The identifier for the requested data.

Returns
Value of an entry stored under given key within this instance of YMap. Will throw a KeyError
if the provided key is unassigned.

__iter__()→ Iterator[str]

Returns
An iterator that traverses all keys of the YMap in an unspecified order.

items()→ YMapItemsView

Returns
A view that can be used to iterate over all entries stored within this instance of YMap. Order
of entry is not specified.

Example:

from y_py import YDoc

# document on machine A
doc = YDoc()
map = doc.get_map('name')
with doc.begin_transaction() as txn:

map.set(txn, 'key1', 'value1')
map.set(txn, 'key2', true)

for (key, value) in map.items()):
print(key, value)

keys()→ YMapKeysView

Returns
A view of all key identifiers in the YMap. The order of keys is not stable.

values()→ YMapValuesView

Returns
A view of all values in the YMap. The order of values is not stable.

observe(f: Callable[[YMapEvent]])→ SubscriptionId
Assigns a callback function to listen to YMap updates.

Parameters
f – Callback function that runs when the map object receives an update.

Returns
A reference to the callback subscription. Delete this observer in order to erase the associated
callback function.

observe_deep(f: Callable[[List[Event]]])→ SubscriptionId
Assigns a callback function to listen to YMap and child element updates.

Parameters
f – Callback function that runs when the map object or any of its tracked elements receive an
update.

3.1. y_py 21



Ypy, Release 0.5.5

Returns
A reference to the callback subscription. Delete this observer in order to erase the associated
callback function.

unobserve(subscription_id: SubscriptionId)
Cancels the observer callback associated with the subscripton_id.

Parameters
subscription_id – reference to a subscription provided by the observe method.

class y_py.YMapItemsView

Tracks key/values inside a YMap. Similar functionality to dict_items for a Python dict

__iter__()→ Iterator[Tuple[str, Any]]
Produces key value tuples of elements inside the view

__contains__()→ bool
Checks membership of kv tuples in the view

__len__()→ int
Checks number of items in the view.

class y_py.YMapKeysView

Tracks key identifiers inside of a YMap

__iter__()→ Iterator[str]
Produces keys of the view

__contains__()→ bool
Checks membership of keys in the view

__len__()→ int
Checks number of keys in the view.

class y_py.YMapValuesView

Tracks values inside of a YMap

__iter__()→ Iterator[Any]
Produces values of the view

__contains__()→ bool
Checks membership of values in the view

__len__()→ int
Checks number of values in the view.

class y_py.YMapEvent

Communicates updates that occurred during a transaction for an instance of YMap. The target references the
YMap element that receives the update. The delta is a list of updates applied by the transaction. The keys are a
list of changed values for a specific key.

target: YMap

The element modified during this event.

keys: Dict[str, YMapEventKeyChange]

A list of modifications to the YMap by key. Includes the type of modification along with the before and
after state.

22 Chapter 3. API Reference



Ypy, Release 0.5.5

path()→ List[Union[int, str]]

Returns
Path to this element from the root if this YMap is nested inside another data structure.

class y_py.YMapEventKeyChange

Bases: TypedDict

action: Literal[add, update, delete]

oldValue: Optional[Any]

newValue: Optional[Any]

y_py.YXmlAttributes

Generates a sequence of key/value properties for an XML Element

y_py.Xml

y_py.YXmlTreeWalker

Visits elements in an Xml tree

y_py.EntryChange

class y_py.YXmlElementEvent

target: YXmlElement

keys: Dict[str, EntryChange]

delta: List[Dict]

path()→ List[Union[int, str]]
Returns a current shared type instance, that current event changes refer to.

class y_py.YXmlElement

XML element data type. It represents an XML node, which can contain key-value attributes (interpreted as
strings) as well as other nested XML elements or rich text (represented by YXmlText type).

In terms of conflict resolution, YXmlElement uses following rules:

• Attribute updates use logical last-write-wins principle, meaning the past updates are automatically over-
ridden and discarded by newer ones, while concurrent updates made by different peers are resolved into a
single value using document id seniority to establish an order.

• Child node insertion uses sequencing rules from other Yrs collections - elements are inserted using
interleave-resistant algorithm, where order of concurrent inserts at the same index is established using
peer’s document id seniority.

name: str

first_child: Optional[Xml]

next_sibling: Optional[Xml]

prev_sibling: Optional[Xml]

parent: Optional[YXmlElement]

__len__()→ int
Returns a number of child XML nodes stored within this YXMlElement instance.

3.1. y_py 23



Ypy, Release 0.5.5

insert_xml_element(txn: YTransaction, index: int, name: str)→ YXmlElement
Inserts a new instance of YXmlElement as a child of this XML node and returns it.

insert_xml_text(txn: YTransaction, index: int)→ YXmlText
Inserts a new instance of YXmlText as a child of this XML node and returns it.

delete(txn: YTransaction, index: int, length: int)
Removes a range of children XML nodes from this YXmlElement instance, starting at given index.

push_xml_element(txn: YTransaction, name: str)→ YXmlElement
Appends a new instance of YXmlElement as the last child of this XML node and returns it.

push_xml_text(txn: YTransaction)→ YXmlText
Appends a new instance of YXmlText as the last child of this XML node and returns it.

__str__()→ str

Returns
A string representation of this XML node.

__repr__()→ str

Returns
A string representation wrapped in YXmlElement

set_attribute(txn: YTransaction, name: str, value: str)
Sets a name and value as new attribute for this XML node. If an attribute with the same name already
existed on that node, its value with be overridden with a provided one.

get_attribute(name: str)→ Optional[str]
Returns a value of an attribute given its name. If no attribute with such name existed, null will be returned.

remove_attribute(txn: YTransaction, name: str)
Removes an attribute from this XML node, given its name.

attributes()→ YXmlAttributes
Returns an iterator that enables to traverse over all attributes of this XML node in unspecified order.

tree_walker()→ YXmlTreeWalker
Returns an iterator that enables a deep traversal of this XML node - starting from first child over this XML
node successors using depth-first strategy.

observe(f: Callable[[YXmlElementEvent]])→ SubscriptionId
Subscribes to all operations happening over this instance of YXmlElement. All changes are batched and
eventually triggered during transaction commit phase.

Parameters
f – A callback function that receives update events.

Returns
A SubscriptionId that can be used to cancel the observer callback.

observe_deep(f: Callable[[List[Event]]])→ SubscriptionId
Subscribes to all operations happening over this instance of YXmlElement and its children. All changes are
batched and eventually triggered during transaction commit phase.

Parameters
f – A callback function that receives update events from the Xml element and its children.

24 Chapter 3. API Reference



Ypy, Release 0.5.5

Returns
A SubscriptionId that can be used to cancel the observer callback.

unobserve(subscription_id: SubscriptionId)
Cancels the observer callback associated with the subscripton_id.

Parameters
subscription_id – reference to a subscription provided by the observe method.

class y_py.YXmlText

next_sibling: Optional[Xml]

prev_sibling: Optional[Xml]

parent: Optional[YXmlElement]

__len__()

Returns
The length of an underlying string stored in this YXmlText instance, understood as a number
of UTF-8 encoded bytes.

insert(txn: YTransaction, index: int, chunk: str)
Inserts a given chunk of text into this YXmlText instance, starting at a given index.

push(txn: YTransaction, chunk: str)
Appends a given chunk of text at the end of YXmlText instance.

delete(txn: YTransaction, index: int, length: int)
Deletes a specified range of of characters, starting at a given index. Both index and length are counted in
terms of a number of UTF-8 character bytes.

__str__()→ str

Returns
The underlying string stored in this YXmlText instance.

__repr__()→ str

Returns
The string representation wrapped in ‘YXmlText()’

set_attribute(txn: YTransaction, name: str, value: str)
Sets a name and value as new attribute for this XML node. If an attribute with the same name already
existed on that node, its value with be overridden with a provided one.

get_attribute(name: str)→ Optional[str]

Returns
A value of an attribute given its name. If no attribute with such name existed,

None will be returned.

remove_attribute(txn: YTransaction, name: str)
Removes an attribute from this XML node, given its name.

attributes()→ YXmlAttributes

Returns
An iterator that enables to traverse over all attributes of this XML node in

3.1. y_py 25



Ypy, Release 0.5.5

unspecified order.

observe(f: Callable[[YXmlTextEvent]])→ SubscriptionId
Subscribes to all operations happening over this instance of YXmlText. All changes are batched and even-
tually triggered during transaction commit phase.

Parameters
• f – A callback function that receives update events.

• deep – Determines whether observer is triggered by changes to elements in the YXmlText.

Returns
A SubscriptionId that can be used to cancel the observer callback.

observe_deep(f: Callable[[List[Event]]])→ SubscriptionId
Subscribes to all operations happening over this instance of YXmlText and its children. All changes are
batched and eventually triggered during transaction commit phase.

Parameters
• f – A callback function that receives update events of this element and its descendants.

• deep – Determines whether observer is triggered by changes to elements in the YXmlText.

Returns
A SubscriptionId that can be used to cancel the observer callback.

unobserve(subscription_id: SubscriptionId)
Cancels the observer callback associated with the subscripton_id.

Parameters
subscription_id – reference to a subscription provided by the observe method.

class y_py.YXmlTextEvent

target: YXmlText

keys: List[EntryChange]

delta: List[YTextDelta]

path()→ List[Union[int, str]]
Returns a current shared type instance, that current event changes refer to.

26 Chapter 3. API Reference



CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

27



Ypy, Release 0.5.5

28 Chapter 4. Indices and tables



PYTHON MODULE INDEX

y
y_py, 7

29



Ypy, Release 0.5.5

30 Python Module Index



INDEX

Symbols
__contains__() (y_py.YMapItemsView method), 22
__contains__() (y_py.YMapKeysView method), 22
__contains__() (y_py.YMapValuesView method), 22
__dict__() (y_py.YMap method), 20
__enter__() (y_py.YTransaction method), 15
__exit__() (y_py.YTransaction method), 15
__getitem__() (y_py.YArray method), 18
__getitem__() (y_py.YMap method), 20
__iter__() (y_py.YArray method), 18
__iter__() (y_py.YMap method), 21
__iter__() (y_py.YMapItemsView method), 22
__iter__() (y_py.YMapKeysView method), 22
__iter__() (y_py.YMapValuesView method), 22
__len__() (y_py.YArray method), 17
__len__() (y_py.YMap method), 19
__len__() (y_py.YMapItemsView method), 22
__len__() (y_py.YMapKeysView method), 22
__len__() (y_py.YMapValuesView method), 22
__len__() (y_py.YText method), 15
__len__() (y_py.YXmlElement method), 23
__len__() (y_py.YXmlText method), 25
__repr__() (y_py.YArray method), 17
__repr__() (y_py.YMap method), 20
__repr__() (y_py.YText method), 15
__repr__() (y_py.YXmlElement method), 24
__repr__() (y_py.YXmlText method), 25
__str__() (y_py.YArray method), 17
__str__() (y_py.YMap method), 20
__str__() (y_py.YText method), 15
__str__() (y_py.YXmlElement method), 24
__str__() (y_py.YXmlText method), 25

A
action (y_py.YMapEventKeyChange attribute), 23
after_state (y_py.AfterTransactionEvent attribute), 11
AfterTransactionEvent (class in y_py), 11
append() (y_py.YArray method), 17
apply_update() (in module y_py), 12
apply_v1() (y_py.YTransaction method), 14
ArrayChangeDelete (class in y_py), 19
ArrayChangeInsert (class in y_py), 19

ArrayChangeRetain (class in y_py), 19
ArrayDelta (in module y_py), 19
attributes (y_py.YTextChangeInsert attribute), 16
attributes (y_py.YTextChangeRetain attribute), 17
attributes() (y_py.YXmlElement method), 24
attributes() (y_py.YXmlText method), 25

B
before_state (y_py.AfterTransactionEvent attribute),

11
before_state (y_py.YTransaction attribute), 13
begin_transaction() (y_py.YDoc method), 10

C
client_id (y_py.YDoc attribute), 10
commit() (y_py.YTransaction method), 13

D
delete (y_py.ArrayChangeDelete attribute), 19
delete (y_py.YTextChangeDelete attribute), 17
delete() (y_py.YArray method), 17
delete() (y_py.YText method), 16
delete() (y_py.YXmlElement method), 24
delete() (y_py.YXmlText method), 25
delete_range() (y_py.YArray method), 17
delete_range() (y_py.YText method), 16
delete_set (y_py.AfterTransactionEvent attribute), 11
delta (y_py.YArrayEvent attribute), 19
delta (y_py.YTextEvent attribute), 16
delta (y_py.YXmlElementEvent attribute), 23
delta (y_py.YXmlTextEvent attribute), 26
diff_v1() (y_py.YTransaction method), 14

E
encode_state_as_update() (in module y_py), 12
encode_state_vector() (in module y_py), 11
EncodedDeleteSet (in module y_py), 11
EncodedStateVector (in module y_py), 11
EntryChange (in module y_py), 23
Event (in module y_py), 9
extend() (y_py.YArray method), 17
extend() (y_py.YText method), 15

31



Ypy, Release 0.5.5

F
first_child (y_py.YXmlElement attribute), 23
format() (y_py.YText method), 15

G
get() (y_py.YMap method), 20
get_array() (y_py.YDoc method), 10
get_array() (y_py.YTransaction method), 13
get_attribute() (y_py.YXmlElement method), 24
get_attribute() (y_py.YXmlText method), 25
get_map() (y_py.YDoc method), 10
get_map() (y_py.YTransaction method), 13
get_text() (y_py.YDoc method), 11
get_text() (y_py.YTransaction method), 13
get_update() (y_py.AfterTransactionEvent method), 11
get_xml_element() (y_py.YDoc method), 10
get_xml_text() (y_py.YDoc method), 10

I
insert (y_py.ArrayChangeInsert attribute), 19
insert (y_py.YTextChangeInsert attribute), 16
insert() (y_py.YArray method), 17
insert() (y_py.YText method), 15
insert() (y_py.YXmlText method), 25
insert_embed() (y_py.YText method), 15
insert_range() (y_py.YArray method), 17
insert_xml_element() (y_py.YXmlElement method),

23
insert_xml_text() (y_py.YXmlElement method), 24
items() (y_py.YMap method), 21

K
keys (y_py.YMapEvent attribute), 22
keys (y_py.YXmlElementEvent attribute), 23
keys (y_py.YXmlTextEvent attribute), 26
keys() (y_py.YMap method), 21

M
module

y_py, 7
move_range_to() (y_py.YArray method), 18
move_to() (y_py.YArray method), 17

N
name (y_py.YXmlElement attribute), 23
newValue (y_py.YMapEventKeyChange attribute), 23
next_sibling (y_py.YXmlElement attribute), 23
next_sibling (y_py.YXmlText attribute), 25

O
observe() (y_py.YArray method), 18
observe() (y_py.YMap method), 21
observe() (y_py.YText method), 16

observe() (y_py.YXmlElement method), 24
observe() (y_py.YXmlText method), 26
observe_after_transaction() (y_py.YDoc method),

11
observe_deep() (y_py.YArray method), 19
observe_deep() (y_py.YMap method), 21
observe_deep() (y_py.YText method), 16
observe_deep() (y_py.YXmlElement method), 24
observe_deep() (y_py.YXmlText method), 26
oldValue (y_py.YMapEventKeyChange attribute), 23

P
parent (y_py.YXmlElement attribute), 23
parent (y_py.YXmlText attribute), 25
path() (y_py.YArrayEvent method), 19
path() (y_py.YMapEvent method), 22
path() (y_py.YTextEvent method), 16
path() (y_py.YXmlElementEvent method), 23
path() (y_py.YXmlTextEvent method), 26
pop() (y_py.YMap method), 20
prelim (y_py.YArray attribute), 17
prelim (y_py.YMap attribute), 19
prelim (y_py.YText attribute), 15
prev_sibling (y_py.YXmlElement attribute), 23
prev_sibling (y_py.YXmlText attribute), 25
push() (y_py.YXmlText method), 25
push_xml_element() (y_py.YXmlElement method), 24
push_xml_text() (y_py.YXmlElement method), 24

R
remove_attribute() (y_py.YXmlElement method), 24
remove_attribute() (y_py.YXmlText method), 25
retain (y_py.ArrayChangeRetain attribute), 19
retain (y_py.YTextChangeRetain attribute), 17

S
set() (y_py.YMap method), 20
set_attribute() (y_py.YXmlElement method), 24
set_attribute() (y_py.YXmlText method), 25
state_vector_v1() (y_py.YTransaction method), 13
SubscriptionId (class in y_py), 9

T
target (y_py.YArrayEvent attribute), 19
target (y_py.YMapEvent attribute), 22
target (y_py.YTextEvent attribute), 16
target (y_py.YXmlElementEvent attribute), 23
target (y_py.YXmlTextEvent attribute), 26
to_json() (y_py.YArray method), 17
to_json() (y_py.YMap method), 20
to_json() (y_py.YText method), 15
transact() (y_py.YDoc method), 10
tree_walker() (y_py.YXmlElement method), 24

32 Index



Ypy, Release 0.5.5

U
unobserve() (y_py.YArray method), 19
unobserve() (y_py.YMap method), 22
unobserve() (y_py.YText method), 16
unobserve() (y_py.YXmlElement method), 25
unobserve() (y_py.YXmlText method), 26
update() (y_py.YMap method), 20

V
values() (y_py.YMap method), 21

X
Xml (in module y_py), 23

Y
y_py

module, 7
YArray (class in y_py), 17
YArrayEvent (class in y_py), 19
YArrayObserver (in module y_py), 19
YDoc (class in y_py), 9
YDocUpdate (in module y_py), 11
YMap (class in y_py), 19
YMapEvent (class in y_py), 22
YMapEventKeyChange (class in y_py), 23
YMapItemsView (class in y_py), 22
YMapKeysView (class in y_py), 22
YMapValuesView (class in y_py), 22
YText (class in y_py), 15
YTextChangeDelete (class in y_py), 16
YTextChangeInsert (class in y_py), 16
YTextChangeRetain (class in y_py), 17
YTextDelta (in module y_py), 16
YTextEvent (class in y_py), 16
YTransaction (class in y_py), 12
YXmlAttributes (in module y_py), 23
YXmlElement (class in y_py), 23
YXmlElementEvent (class in y_py), 23
YXmlText (class in y_py), 25
YXmlTextEvent (class in y_py), 26
YXmlTreeWalker (in module y_py), 23

Index 33


	Installation
	Tutorial
	API Reference
	y_py
	Module Contents
	Classes
	Functions
	Attributes



	Indices and tables
	Python Module Index
	Index

