

Ypy Documentation

Ypy is a high-performance CRDT that allows Python developers to easily synchronize state between processes. It is built on top of Y-CRDT: a powerful distributed data type library written in Rust. With Ypy, developers can make robust, eventually consistent applications that share state between users. All changes are automatically resolved across application instances, so your code can focus on representing state instead of synchronizing it. This shared state can go beyond Python programs, interfacing to web applications backed by Y-Wasm. This allows for seamless communication between frontend user interfaces and Python application logic.

Contents:

	Installation

	Tutorial

	API Reference
	y_py

Indices and tables

	Index

	Module Index

	Search Page

Installation

You can install Ypy from PyPI:

pip install y-py

Or from conda:

conda install -c conda-forge y-py

Tutorial

Each user working with Ypy data can read and update information through a shared document instance. Anything added to the document will be tracked and synchronized across all document instances. These documents can hold common data types, including numbers, booleans, strings, lists, dictionaries, and XML trees. Modifying the document state is done inside a transaction for robustness and thread safety. With these building blocks, you can safely share data between users. Here is a basic hello world example:

import y_py as Y

d1 = Y.YDoc()
Create a new YText object in the YDoc
text = d1.get_text('test')
Start a transaction in order to update the text
with d1.begin_transaction() as txn:
 # Add text contents
 text.extend(txn, "hello world!")

Create another document
d2 = Y.YDoc()
Share state with the original document
state_vector = Y.encode_state_vector(d2)
diff = Y.encode_state_as_update(d1, state_vector)
Y.apply_update(d2, diff)

value = str(d2.get_text('test'))

assert value == "hello world!"

API Reference

This page contains auto-generated API reference documentation [1].

	y_py

[1]
Created with sphinx-autoapi [https://github.com/readthedocs/sphinx-autoapi]

y_py

Module Contents

Classes

	SubscriptionId

	Tracks an observer callback. Pass this to the unobserve method to cancel

	YDoc

	A Ypy document type. Documents are most important units of collaborative resources management.

	AfterTransactionEvent

	Holds transaction update information from a commit after state vectors have been compressed.

	YTransaction

	A transaction that serves as a proxy to document block store. Ypy shared data types execute

	YText

	A shared data type used for collaborative text editing. It enables multiple users to add and

	YTextEvent

	Communicates updates that occurred during a transaction for an instance of YText.

	YTextChangeInsert

	

	YTextChangeDelete

	

	YTextChangeRetain

	

	YArray

	

	YArrayEvent

	Communicates updates that occurred during a transaction for an instance of YArray.

	ArrayChangeInsert

	Update message that elements were inserted in a YArray.

	ArrayChangeDelete

	Update message that elements were deleted in a YArray.

	ArrayChangeRetain

	Update message that elements were left unmodified in a YArray.

	YMap

	

	YMapItemsView

	Tracks key/values inside a YMap. Similar functionality to dict_items for a Python dict

	YMapKeysView

	Tracks key identifiers inside of a YMap

	YMapValuesView

	Tracks values inside of a YMap

	YMapEvent

	Communicates updates that occurred during a transaction for an instance of YMap.

	YMapEventKeyChange

	

	YXmlElementEvent

	

	YXmlElement

	XML element data type. It represents an XML node, which can contain key-value attributes

	YXmlText

	

	YXmlTextEvent

	

Functions

	encode_state_vector(→ EncodedStateVector)

	Encodes a state vector of a given Ypy document into its binary representation using lib0 v1

	encode_state_as_update(→ YDocUpdate)

	Encodes all updates that have happened since a given version vector into a compact delta

	apply_update(doc, diff)

	Applies delta update generated by the remote document replica to a current document. This

Attributes

	Event

	

	EncodedStateVector

	

	EncodedDeleteSet

	

	YDocUpdate

	

	YTextDelta

	

	YArrayObserver

	

	ArrayDelta

	A modification to a YArray during a transaction.

	YXmlAttributes

	Generates a sequence of key/value properties for an XML Element

	Xml

	

	YXmlTreeWalker

	Visits elements in an Xml tree

	EntryChange

	

	
class y_py.SubscriptionId

	Tracks an observer callback. Pass this to the unobserve method to cancel
its associated callback.

	
y_py.Event

	

	
class y_py.YDoc(client_id: Optional[int] = None, offset_kind: str = 'utf8', skip_gc: bool = False)

	A Ypy document type. Documents are most important units of collaborative resources management.
All shared collections live within a scope of their corresponding documents. All updates are
generated on per document basis (rather than individual shared type). All operations on shared
collections happen via YTransaction, which lifetime is also bound to a document.

Document manages so called root types, which are top-level shared types definitions (as opposed
to recursively nested types).

Example:

from y_py import YDoc

doc = YDoc()
with doc.begin_transaction() as txn:
 text = txn.get_text('name')
 text.extend(txn, 'hello world')
 output = text.to_string(txn)
 print(output)

	
client_id: int

	

	
begin_transaction() → YTransaction

	
	Returns:

	A new transaction for this document. Ypy shared data types execute their
operations in a context of a given transaction. Each document can have only one active
transaction at the time - subsequent attempts will cause exception to be thrown.

Transactions started with doc.begin_transaction can be released by deleting the transaction object
method.

Example:

from y_py import YDoc
doc = YDoc()
text = doc.get_text('name')
with doc.begin_transaction() as txn:
 text.insert(txn, 0, 'hello world')

	
transact(callback: Callable[[YTransaction]])

	

	
get_map(name: str) → YMap

	
	Returns:

	A YMap shared data type, that’s accessible for subsequent accesses using given name.

If there was no instance with this name before, it will be created and then returned.

If there was an instance with this name, but it was of different type, it will be projected
onto YMap instance.

	
get_xml_element(name: str) → YXmlElement

	
	Returns:

	A YXmlElement shared data type, that’s accessible for subsequent accesses using given name.

If there was no instance with this name before, it will be created and then returned.

If there was an instance with this name, but it was of different type, it will be projected
onto YXmlElement instance.

	
get_xml_text(name: str) → YXmlText

	
	Returns:

	A YXmlText shared data type, that’s accessible for subsequent accesses using given name.

If there was no instance with this name before, it will be created and then returned.

If there was an instance with this name, but it was of different type, it will be projected
onto YXmlText instance.

	
get_array(name: str) → YArray

	
	Returns:

	A YArray shared data type, that’s accessible for subsequent accesses using given name.

If there was no instance with this name before, it will be created and then returned.

If there was an instance with this name, but it was of different type, it will be projected
onto YArray instance.

	
get_text(name: str) → YText

	
	Parameters:

	name – The identifier for retreiving the text

	Returns:

	A YText shared data type, that’s accessible for subsequent accesses using given name.

If there was no instance with this name before, it will be created and then returned.
If there was an instance with this name, but it was of different type, it will be projected
onto YText instance.

	
observe_after_transaction(callback: Callable[[AfterTransactionEvent]]) → SubscriptionId

	Subscribe callback function to updates on the YDoc. The callback will receive encoded state updates and
deletions when a document transaction is committed.

	Parameters:

	callback – A function that receives YDoc state information affected by the transaction.

	Returns:

	A subscription identifier that can be used to cancel the callback.

	
y_py.EncodedStateVector

	

	
y_py.EncodedDeleteSet

	

	
y_py.YDocUpdate

	

	
class y_py.AfterTransactionEvent

	Holds transaction update information from a commit after state vectors have been compressed.

	
before_state: EncodedStateVector

	Encoded state of YDoc before the transaction.

	
after_state: EncodedStateVector

	Encoded state of the YDoc after the transaction.

	
delete_set: EncodedDeleteSet

	Elements deleted by the associated transaction.

	
get_update() → YDocUpdate

	
	Returns:

	Encoded payload of all updates produced by the transaction.

	
y_py.encode_state_vector(doc: YDoc) → EncodedStateVector

	Encodes a state vector of a given Ypy document into its binary representation using lib0 v1
encoding. State vector is a compact representation of updates performed on a given document and
can be used by encode_state_as_update on remote peer to generate a delta update payload to
synchronize changes between peers.

Example:

from y_py import YDoc, encode_state_vector, encode_state_as_update, apply_update from y_py

document on machine A
local_doc = YDoc()
local_sv = encode_state_vector(local_doc)

document on machine B
remote_doc = YDoc()
remote_delta = encode_state_as_update(remote_doc, local_sv)

apply_update(local_doc, remote_delta)

	
y_py.encode_state_as_update(doc: YDoc, vector: Optional[Union[EncodedStateVector, List[int]]] = None) → YDocUpdate

	Encodes all updates that have happened since a given version vector into a compact delta
representation using lib0 v1 encoding. If vector parameter has not been provided, generated
delta payload will contain all changes of a current Ypy document, working effectively as its
state snapshot.

Example:

from y_py import YDoc, encode_state_vector, encode_state_as_update, apply_update

document on machine A
local_doc = YDoc()
local_sv = encode_state_vector(local_doc)

document on machine B
remote_doc = YDoc()
remote_delta = encode_state_as_update(remote_doc, local_sv)

apply_update(local_doc, remote_delta)

	
y_py.apply_update(doc: YDoc, diff: Union[YDocUpdate, List[int]])

	Applies delta update generated by the remote document replica to a current document. This
method assumes that a payload maintains lib0 v1 encoding format.

Example:

from y_py import YDoc, encode_state_vector, encode_state_as_update, apply_update

document on machine A
local_doc = YDoc()
local_sv = encode_state_vector(local_doc)

document on machine B
remote_doc = YDoc()
remote_delta = encode_state_as_update(remote_doc, local_sv)

apply_update(local_doc, remote_delta)

	
class y_py.YTransaction

	A transaction that serves as a proxy to document block store. Ypy shared data types execute
their operations in a context of a given transaction. Each document can have only one active
transaction at the time - subsequent attempts will cause exception to be thrown.

Transactions started with doc.begin_transaction can be released by deleting the transaction object
method.

Example:

from y_py import YDoc
doc = YDoc()
text = doc.get_text('name')
with doc.begin_transaction() as txn:
 text.insert(txn, 0, 'hello world')

	
before_state: Dict[int, int]

	

	
get_text(name: str) → YText

	
	Returns:

	A YText shared data type, that’s accessible for subsequent accesses using given name.

If there was no instance with this name before, it will be created and then returned.

If there was an instance with this name, but it was of different type, it will be projected
onto YText instance.

	
get_array(name: str) → YArray

	
	Returns:

	A YArray shared data type, that’s accessible for subsequent accesses using given name.

If there was no instance with this name before, it will be created and then returned.

If there was an instance with this name, but it was of different type, it will be projected
onto YArray instance.

	
get_map(name: str) → YMap

	
	Returns:

	A YMap shared data type, that’s accessible for subsequent accesses using given name.

If there was no instance with this name before, it will be created and then returned.

If there was an instance with this name, but it was of different type, it will be projected
onto YMap instance.

	
commit()

	Triggers a post-update series of operations without `free`ing the transaction. This includes
compaction and optimization of internal representation of updates, triggering events etc.
Ypy transactions are auto-committed when they are `free`d.

	
state_vector_v1() → EncodedStateVector

	Encodes a state vector of a given transaction document into its binary representation using
lib0 v1 encoding. State vector is a compact representation of updates performed on a given
document and can be used by encode_state_as_update on remote peer to generate a delta
update payload to synchronize changes between peers.

Example:

from y_py import YDoc

document on machine A
local_doc = YDoc()
local_txn = local_doc.begin_transaction()

document on machine B
remote_doc = YDoc()
remote_txn = local_doc.begin_transaction()

try:
 local_sv = local_txn.state_vector_v1()
 remote_delta = remote_txn.diff_v1(local_sv)
 local_txn.apply_v1(remote_delta)
finally:
 del local_txn
 del remote_txn

	
diff_v1(vector: Optional[EncodedStateVector] = None) → YDocUpdate

	Encodes all updates that have happened since a given version vector into a compact delta
representation using lib0 v1 encoding. If vector parameter has not been provided, generated
delta payload will contain all changes of a current Ypy document, working effectively as
its state snapshot.

Example:

from y_py import YDoc

document on machine A
local_doc = YDoc()
local_txn = local_doc.begin_transaction()

document on machine B
remote_doc = YDoc()
remote_txn = local_doc.begin_transaction()

try:
 local_sv = local_txn.state_vector_v1()
 remote_delta = remote_txn.diff_v1(local_sv)
 local_txn.apply_v1(remote_delta)
finally:
 del local_txn
 del remote_txn

	
apply_v1(diff: YDocUpdate)

	Applies delta update generated by the remote document replica to a current transaction’s
document. This method assumes that a payload maintains lib0 v1 encoding format.

Example:

from y_py import YDoc

document on machine A
local_doc = YDoc()
local_txn = local_doc.begin_transaction()

document on machine B
remote_doc = YDoc()
remote_txn = local_doc.begin_transaction()

try:
 local_sv = local_txn.state_vector_v1()
 remote_delta = remote_txn.diff_v1(local_sv)
 local_txn.apply_v1(remote_delta)
finally:
 del local_txn
 del remote_txn

	
__enter__() → YTransaction

	

	
__exit__() → bool

	

	
class y_py.YText(init: str = '')

	A shared data type used for collaborative text editing. It enables multiple users to add and
remove chunks of text in efficient manner. This type is internally represented as able
double-linked list of text chunks - an optimization occurs during YTransaction.commit, which
allows to squash multiple consecutively inserted characters together as a single chunk of text
even between transaction boundaries in order to preserve more efficient memory model.

YText structure internally uses UTF-8 encoding and its length is described in a number of
bytes rather than individual characters (a single UTF-8 code point can consist of many bytes).

Like all Yrs shared data types, YText is resistant to the problem of interleaving (situation
when characters inserted one after another may interleave with other peers concurrent inserts
after merging all updates together). In case of Yrs conflict resolution is solved by using
unique document id to determine correct and consistent ordering.

	
prelim: bool

	True if this element has not been integrated into a YDoc.

	
__str__() → str

	
	Returns:

	The underlying shared string stored in this data type.

	
__repr__() → str

	
	Returns:

	The string representation wrapped in ‘YText()’

	
__len__() → int

	
	Returns:

	The length of an underlying string stored in this YText instance, understood as a number of UTF-8 encoded bytes.

	
to_json() → str

	
	Returns:

	The underlying shared string stored in this data type.

	
insert(txn: YTransaction, index: int, chunk: str, attributes: Dict[str, Any] = {})

	Inserts a string of text into the YText instance starting at a given index.
Attributes are optional style modifiers ({“bold”: True}) that can be attached to the inserted string.
Attributes are only supported for a YText instance which already has been integrated into document store.

	
insert_embed(txn: YTransaction, index: int, embed: Any, attributes: Dict[str, Any] = {})

	Inserts embedded content into the YText at the provided index. Attributes are user-defined metadata associated with the embedded content.
Attributes are only supported for a YText instance which already has been integrated into document store.

	
format(txn: YTransaction, index: int, length: int, attributes: Dict[str, Any])

	Wraps an existing piece of text within a range described by index-length parameters with
formatting blocks containing provided attributes metadata. This method only works for
YText instances that already have been integrated into document store

	
extend(txn: YTransaction, chunk: str)

	Appends a given chunk of text at the end of current YText instance.

	
delete(txn: YTransaction, index: int)

	Deletes the character at the specified index.

	
delete_range(txn: YTransaction, index: int, length: int)

	Deletes a specified range of of characters, starting at a given index.
Both index and length are counted in terms of a number of UTF-8 character bytes.

	
observe(f: Callable[[YTextEvent]]) → SubscriptionId

	Assigns a callback function to listen to YText updates.

	Parameters:

	f – Callback function that runs when the text object receives an update.

	Returns:

	A reference to the callback subscription.

	
observe_deep(f: Callable[[List[Event]]]) → SubscriptionId

	Assigns a callback function to listen to the updates of the YText instance and those of its nested attributes.
Currently, this listens to the same events as YText.observe, but in the future this will also listen to
the events of embedded values.

	Parameters:

	f – Callback function that runs when the text object or its nested attributes receive an update.

	Returns:

	A reference to the callback subscription.

	
unobserve(subscription_id: SubscriptionId)

	Cancels the observer callback associated with the subscripton_id.

	Parameters:

	subscription_id – reference to a subscription provided by the observe method.

	
class y_py.YTextEvent

	Communicates updates that occurred during a transaction for an instance of YText.
The target references the YText element that receives the update.
The delta is a list of updates applied by the transaction.

	
target: YText

	

	
delta: List[YTextDelta]

	

	
path() → List[Union[int, str]]

	
	Returns:

	Array of keys and indexes creating a path from root type down to current instance of shared type (accessible via target getter).

	
y_py.YTextDelta

	

	
class y_py.YTextChangeInsert

	Bases: TypedDict

	
insert: str

	

	
attributes: Optional[Any]

	

	
class y_py.YTextChangeDelete

	Bases: TypedDict

	
delete: int

	

	
class y_py.YTextChangeRetain

	Bases: TypedDict

	
retain: int

	

	
attributes: Optional[Any]

	

	
class y_py.YArray

	
	
prelim: bool

	True if this element has not been integrated into a YDoc.

	
__len__() → int

	
	Returns:

	Number of elements in the YArray

	
__str__() → str

	
	Returns:

	The string representation of YArray

	
__repr__() → str

	
	Returns:

	The string representation of YArray wrapped in YArray()

	
to_json() → str

	Converts an underlying contents of this YArray instance into their JSON representation.

	
insert(txn: YTransaction, index: int, item: Any)

	Inserts an item at the provided index in the YArray.

	
insert_range(txn: YTransaction, index: int, items: Iterable)

	Inserts a given range of items into this YArray instance, starting at given index.

	
append(txn: YTransaction, item: Any)

	Adds a single item to the end of the YArray

	
extend(txn: YTransaction, items: Iterable)

	Appends a sequence of items at the end of this YArray instance.

	
delete(txn: YTransaction, index: int)

	Deletes a single item from the array

	Parameters:

	
	txn – The transaction where the array is being modified.

	index – The index of the element to be deleted.

	
delete_range(txn: YTransaction, index: int, length: int)

	Deletes a range of items of given length from current YArray instance,
starting from given index.

	
move_to(txn: YTransaction, source: int, target: int)

	Moves a single item found at source index into target index position.

	Parameters:

	
	txn – The transaction where the array is being modified.

	source – The index of the element to be moved.

	target – The new position of the element.

	
move_range_to(txn: YTransaction, start: int, end: int, target: int)

	Moves all elements found within start..`end` indexes range (both side inclusive) into
new position pointed by target index. All elements inserted concurrently by other peers
inside of moved range will be moved as well after synchronization (although it make take
more than one sync roundtrip to achieve convergence).

	Parameters:

	
	txn – The transaction where the array is being modified.

	start – The index of the first element of the range (inclusive).

	end – The index of the last element of the range (inclusive).

	target – The new position of the element.

Example:
```
import y_py as Y
doc = Y.Doc();
array = doc.get_array(‘array’)


	with doc.begin_transaction() as t:
	array.insert_range(t, 0, [1,2,3,4]);





// move elements 2 and 3 after the 4
with doc.begin_transaction() as t:


array.move_range_to(t, 1, 2, 4);




```


	
__getitem__(index: Union[int, slice]) → Any

	
	Returns:

	The element stored under given index or a new list of elements from the slice range.

	
__iter__() → Iterator

	
	Returns:

	An iterator that can be used to traverse over the values stored withing this instance of YArray.

Example:

from y_py import YDoc

document on machine A
doc = YDoc()
array = doc.get_array('name')

for item in array:
 print(item)

	
observe(f: Callable[[YArrayEvent]]) → SubscriptionId

	Assigns a callback function to listen to YArray updates.

	Parameters:

	f – Callback function that runs when the array object receives an update.

	Returns:

	An identifier associated with the callback subscription.

	
observe_deep(f: Callable[[List[Event]]]) → SubscriptionId

	Assigns a callback function to listen to the aggregated updates of the YArray and its child elements.

	Parameters:

	f – Callback function that runs when the array object or components receive an update.

	Returns:

	An identifier associated with the callback subscription.

	
unobserve(subscription_id: SubscriptionId)

	Cancels the observer callback associated with the subscripton_id.

	Parameters:

	subscription_id – reference to a subscription provided by the observe method.

	
y_py.YArrayObserver

	

	
class y_py.YArrayEvent

	Communicates updates that occurred during a transaction for an instance of YArray.
The target references the YArray element that receives the update.
The delta is a list of updates applied by the transaction.

	
target: YArray

	

	
delta: List[ArrayDelta]

	

	
path() → List[Union[int, str]]

	
	Returns:

	Array of keys and indexes creating a path from root type down to current instance of shared type (accessible via target getter).

	
y_py.ArrayDelta

	A modification to a YArray during a transaction.

	
class y_py.ArrayChangeInsert

	Bases: TypedDict

Update message that elements were inserted in a YArray.

	
insert: List[Any]

	

	
class y_py.ArrayChangeDelete

	Update message that elements were deleted in a YArray.

	
delete: int

	

	
class y_py.ArrayChangeRetain

	Update message that elements were left unmodified in a YArray.

	
retain: int

	

	
class y_py.YMap

	
	
prelim: bool

	True if this element has not been integrated into a YDoc.

	
__len__() → int

	
	Returns:

	The number of entries stored within this instance of YMap.

	
__str__() → str

	
	Returns:

	The string representation of the YMap.

	
__dict__() → dict

	
	Returns:

	Contents of the YMap inside a Python dictionary.

	
__repr__() → str

	
	Returns:

	The string representation of the YMap wrapped in ‘YMap()’

	
to_json() → str

	Converts contents of this YMap instance into a JSON representation.

	
set(txn: YTransaction, key: str, value: Any)

	Sets a given key-value entry within this instance of YMap. If another entry was
already stored under given key, it will be overridden with new value.

	
update(txn: YTransaction, items: Union[Iterable[Tuple[str, Any]], Dict[str, Any]])

	Updates YMap with the contents of items.

	Parameters:

	
	txn – A transaction to perform the insertion updates.

	items – An iterable object that produces key value tuples to insert into the YMap

	
pop(txn: YTransaction, key: str, fallback: Optional[Any] = None) → Any

	Removes an entry identified by a given key from this instance of YMap, if such exists.
Throws a KeyError if the key does not exist and fallback value is not provided.

	Parameters:

	
	txn – The current transaction from a YDoc.

	key – Identifier of the requested item.

	fallback – Returns this value if the key doesn’t exist in the YMap

	Returns:

	The item at the key.

	
get(key: str, fallback: Any) → Any | None

	
	Parameters:

	
	key – The identifier for the requested data.

	fallback – If the key doesn’t exist in the map, this fallback value will be returned.

	Returns:

	Requested data or the provided fallback value.

	
__getitem__(key: str) → Any

	
	Parameters:

	key – The identifier for the requested data.

	Returns:

	Value of an entry stored under given key within this instance of YMap. Will throw a KeyError if the provided key is unassigned.

	
__iter__() → Iterator[str]

	
	Returns:

	An iterator that traverses all keys of the YMap in an unspecified order.

	
items() → YMapItemsView

	
	Returns:

	A view that can be used to iterate over all entries stored within this instance of YMap. Order of entry is not specified.

Example:

from y_py import YDoc

document on machine A
doc = YDoc()
map = doc.get_map('name')
with doc.begin_transaction() as txn:
 map.set(txn, 'key1', 'value1')
 map.set(txn, 'key2', true)
for (key, value) in map.items()):
 print(key, value)

	
keys() → YMapKeysView

	
	Returns:

	A view of all key identifiers in the YMap. The order of keys is not stable.

	
values() → YMapValuesView

	
	Returns:

	A view of all values in the YMap. The order of values is not stable.

	
observe(f: Callable[[YMapEvent]]) → SubscriptionId

	Assigns a callback function to listen to YMap updates.

	Parameters:

	f – Callback function that runs when the map object receives an update.

	Returns:

	A reference to the callback subscription. Delete this observer in order to erase the associated callback function.

	
observe_deep(f: Callable[[List[Event]]]) → SubscriptionId

	Assigns a callback function to listen to YMap and child element updates.

	Parameters:

	f – Callback function that runs when the map object or any of its tracked elements receive an update.

	Returns:

	A reference to the callback subscription. Delete this observer in order to erase the associated callback function.

	
unobserve(subscription_id: SubscriptionId)

	Cancels the observer callback associated with the subscripton_id.

	Parameters:

	subscription_id – reference to a subscription provided by the observe method.

	
class y_py.YMapItemsView

	Tracks key/values inside a YMap. Similar functionality to dict_items for a Python dict

	
__iter__() → Iterator[Tuple[str, Any]]

	Produces key value tuples of elements inside the view

	
__contains__() → bool

	Checks membership of kv tuples in the view

	
__len__() → int

	Checks number of items in the view.

	
class y_py.YMapKeysView

	Tracks key identifiers inside of a YMap

	
__iter__() → Iterator[str]

	Produces keys of the view

	
__contains__() → bool

	Checks membership of keys in the view

	
__len__() → int

	Checks number of keys in the view.

	
class y_py.YMapValuesView

	Tracks values inside of a YMap

	
__iter__() → Iterator[Any]

	Produces values of the view

	
__contains__() → bool

	Checks membership of values in the view

	
__len__() → int

	Checks number of values in the view.

	
class y_py.YMapEvent

	Communicates updates that occurred during a transaction for an instance of YMap.
The target references the YMap element that receives the update.
The delta is a list of updates applied by the transaction.
The keys are a list of changed values for a specific key.

	
target: YMap

	The element modified during this event.

	
keys: Dict[str, YMapEventKeyChange]

	A list of modifications to the YMap by key.
Includes the type of modification along with the before and after state.

	
path() → List[Union[int, str]]

	
	Returns:

	Path to this element from the root if this YMap is nested inside another data structure.

	
class y_py.YMapEventKeyChange

	Bases: TypedDict

	
action: Literal[add, update, delete]

	

	
oldValue: Optional[Any]

	

	
newValue: Optional[Any]

	

	
y_py.YXmlAttributes

	Generates a sequence of key/value properties for an XML Element

	
y_py.Xml

	

	
y_py.YXmlTreeWalker

	Visits elements in an Xml tree

	
y_py.EntryChange

	

	
class y_py.YXmlElementEvent

	
	
target: YXmlElement

	

	
keys: Dict[str, EntryChange]

	

	
delta: List[Dict]

	

	
path() → List[Union[int, str]]

	Returns a current shared type instance, that current event changes refer to.

	
class y_py.YXmlElement

	XML element data type. It represents an XML node, which can contain key-value attributes
(interpreted as strings) as well as other nested XML elements or rich text (represented by
YXmlText type).

In terms of conflict resolution, YXmlElement uses following rules:

	Attribute updates use logical last-write-wins principle, meaning the past updates are
automatically overridden and discarded by newer ones, while concurrent updates made by
different peers are resolved into a single value using document id seniority to establish
an order.

	Child node insertion uses sequencing rules from other Yrs collections - elements are inserted
using interleave-resistant algorithm, where order of concurrent inserts at the same index
is established using peer’s document id seniority.

	
name: str

	

	
first_child: Optional[Xml]

	

	
next_sibling: Optional[Xml]

	

	
prev_sibling: Optional[Xml]

	

	
parent: Optional[YXmlElement]

	

	
__len__() → int

	Returns a number of child XML nodes stored within this YXMlElement instance.

	
insert_xml_element(txn: YTransaction, index: int, name: str) → YXmlElement

	Inserts a new instance of YXmlElement as a child of this XML node and returns it.

	
insert_xml_text(txn: YTransaction, index: int) → YXmlText

	Inserts a new instance of YXmlText as a child of this XML node and returns it.

	
delete(txn: YTransaction, index: int, length: int)

	Removes a range of children XML nodes from this YXmlElement instance,
starting at given index.

	
push_xml_element(txn: YTransaction, name: str) → YXmlElement

	Appends a new instance of YXmlElement as the last child of this XML node and returns it.

	
push_xml_text(txn: YTransaction) → YXmlText

	Appends a new instance of YXmlText as the last child of this XML node and returns it.

	
__str__() → str

	
	Returns:

	A string representation of this XML node.

	
__repr__() → str

	
	Returns:

	A string representation wrapped in YXmlElement

	
set_attribute(txn: YTransaction, name: str, value: str)

	Sets a name and value as new attribute for this XML node. If an attribute with the same
name already existed on that node, its value with be overridden with a provided one.

	
get_attribute(name: str) → Optional[str]

	Returns a value of an attribute given its name. If no attribute with such name existed,
null will be returned.

	
remove_attribute(txn: YTransaction, name: str)

	Removes an attribute from this XML node, given its name.

	
attributes() → YXmlAttributes

	Returns an iterator that enables to traverse over all attributes of this XML node in
unspecified order.

	
tree_walker() → YXmlTreeWalker

	Returns an iterator that enables a deep traversal of this XML node - starting from first
child over this XML node successors using depth-first strategy.

	
observe(f: Callable[[YXmlElementEvent]]) → SubscriptionId

	Subscribes to all operations happening over this instance of YXmlElement. All changes are
batched and eventually triggered during transaction commit phase.

	Parameters:

	f – A callback function that receives update events.

	Returns:

	A SubscriptionId that can be used to cancel the observer callback.

	
observe_deep(f: Callable[[List[Event]]]) → SubscriptionId

	Subscribes to all operations happening over this instance of YXmlElement and its children. All changes are
batched and eventually triggered during transaction commit phase.

	Parameters:

	f – A callback function that receives update events from the Xml element and its children.

	Returns:

	A SubscriptionId that can be used to cancel the observer callback.

	
unobserve(subscription_id: SubscriptionId)

	Cancels the observer callback associated with the subscripton_id.

	Parameters:

	subscription_id – reference to a subscription provided by the observe method.

	
class y_py.YXmlText

	
	
next_sibling: Optional[Xml]

	

	
prev_sibling: Optional[Xml]

	

	
parent: Optional[YXmlElement]

	

	
__len__()

	
	Returns:

	The length of an underlying string stored in this YXmlText instance, understood as a number of UTF-8 encoded bytes.

	
insert(txn: YTransaction, index: int, chunk: str)

	Inserts a given chunk of text into this YXmlText instance, starting at a given index.

	
push(txn: YTransaction, chunk: str)

	Appends a given chunk of text at the end of YXmlText instance.

	
delete(txn: YTransaction, index: int, length: int)

	Deletes a specified range of of characters, starting at a given index.
Both index and length are counted in terms of a number of UTF-8 character bytes.

	
__str__() → str

	
	Returns:

	The underlying string stored in this YXmlText instance.

	
__repr__() → str

	
	Returns:

	The string representation wrapped in ‘YXmlText()’

	
set_attribute(txn: YTransaction, name: str, value: str)

	Sets a name and value as new attribute for this XML node. If an attribute with the same
name already existed on that node, its value with be overridden with a provided one.

	
get_attribute(name: str) → Optional[str]

	
	Returns:

	A value of an attribute given its name. If no attribute with such name existed,

None will be returned.

	
remove_attribute(txn: YTransaction, name: str)

	Removes an attribute from this XML node, given its name.

	
attributes() → YXmlAttributes

	
	Returns:

	An iterator that enables to traverse over all attributes of this XML node in

unspecified order.

	
observe(f: Callable[[YXmlTextEvent]]) → SubscriptionId

	Subscribes to all operations happening over this instance of YXmlText. All changes are
batched and eventually triggered during transaction commit phase.

	Parameters:

	
	f – A callback function that receives update events.

	deep – Determines whether observer is triggered by changes to elements in the YXmlText.

	Returns:

	A SubscriptionId that can be used to cancel the observer callback.

	
observe_deep(f: Callable[[List[Event]]]) → SubscriptionId

	Subscribes to all operations happening over this instance of YXmlText and its children. All changes are
batched and eventually triggered during transaction commit phase.

	Parameters:

	
	f – A callback function that receives update events of this element and its descendants.

	deep – Determines whether observer is triggered by changes to elements in the YXmlText.

	Returns:

	A SubscriptionId that can be used to cancel the observer callback.

	
unobserve(subscription_id: SubscriptionId)

	Cancels the observer callback associated with the subscripton_id.

	Parameters:

	subscription_id – reference to a subscription provided by the observe method.

	
class y_py.YXmlTextEvent

	
	
target: YXmlText

	

	
keys: List[EntryChange]

	

	
delta: List[YTextDelta]

	

	
path() → List[Union[int, str]]

	Returns a current shared type instance, that current event changes refer to.

 Python Module Index

 y

 		 	

 		
 y	

 	
 	
 y_py	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | X
 | Y

_

 	
 	__contains__() (y_py.YMapItemsView method)

 	(y_py.YMapKeysView method)

 	(y_py.YMapValuesView method)

 	__dict__() (y_py.YMap method)

 	__enter__() (y_py.YTransaction method)

 	__exit__() (y_py.YTransaction method)

 	__getitem__() (y_py.YArray method)

 	(y_py.YMap method)

 	__iter__() (y_py.YArray method)

 	(y_py.YMap method)

 	(y_py.YMapItemsView method)

 	(y_py.YMapKeysView method)

 	(y_py.YMapValuesView method)

 	__len__() (y_py.YArray method)

 	(y_py.YMap method)

 	(y_py.YMapItemsView method)

 	(y_py.YMapKeysView method)

 	(y_py.YMapValuesView method)

 	(y_py.YText method)

 	(y_py.YXmlElement method)

 	(y_py.YXmlText method)

 	
 	__repr__() (y_py.YArray method)

 	(y_py.YMap method)

 	(y_py.YText method)

 	(y_py.YXmlElement method)

 	(y_py.YXmlText method)

 	__str__() (y_py.YArray method)

 	(y_py.YMap method)

 	(y_py.YText method)

 	(y_py.YXmlElement method)

 	(y_py.YXmlText method)

A

 	
 	action (y_py.YMapEventKeyChange attribute)

 	after_state (y_py.AfterTransactionEvent attribute)

 	AfterTransactionEvent (class in y_py)

 	append() (y_py.YArray method)

 	apply_update() (in module y_py)

 	apply_v1() (y_py.YTransaction method)

 	ArrayChangeDelete (class in y_py)

 	
 	ArrayChangeInsert (class in y_py)

 	ArrayChangeRetain (class in y_py)

 	ArrayDelta (in module y_py)

 	attributes (y_py.YTextChangeInsert attribute)

 	(y_py.YTextChangeRetain attribute)

 	attributes() (y_py.YXmlElement method)

 	(y_py.YXmlText method)

B

 	
 	before_state (y_py.AfterTransactionEvent attribute)

 	(y_py.YTransaction attribute)

 	
 	begin_transaction() (y_py.YDoc method)

C

 	
 	client_id (y_py.YDoc attribute)

 	
 	commit() (y_py.YTransaction method)

D

 	
 	delete (y_py.ArrayChangeDelete attribute)

 	(y_py.YTextChangeDelete attribute)

 	delete() (y_py.YArray method)

 	(y_py.YText method)

 	(y_py.YXmlElement method)

 	(y_py.YXmlText method)

 	delete_range() (y_py.YArray method)

 	(y_py.YText method)

 	
 	delete_set (y_py.AfterTransactionEvent attribute)

 	delta (y_py.YArrayEvent attribute)

 	(y_py.YTextEvent attribute)

 	(y_py.YXmlElementEvent attribute)

 	(y_py.YXmlTextEvent attribute)

 	diff_v1() (y_py.YTransaction method)

E

 	
 	encode_state_as_update() (in module y_py)

 	encode_state_vector() (in module y_py)

 	EncodedDeleteSet (in module y_py)

 	EncodedStateVector (in module y_py)

 	
 	EntryChange (in module y_py)

 	Event (in module y_py)

 	extend() (y_py.YArray method)

 	(y_py.YText method)

F

 	
 	first_child (y_py.YXmlElement attribute)

 	
 	format() (y_py.YText method)

G

 	
 	get() (y_py.YMap method)

 	get_array() (y_py.YDoc method)

 	(y_py.YTransaction method)

 	get_attribute() (y_py.YXmlElement method)

 	(y_py.YXmlText method)

 	get_map() (y_py.YDoc method)

 	(y_py.YTransaction method)

 	
 	get_text() (y_py.YDoc method)

 	(y_py.YTransaction method)

 	get_update() (y_py.AfterTransactionEvent method)

 	get_xml_element() (y_py.YDoc method)

 	get_xml_text() (y_py.YDoc method)

I

 	
 	insert (y_py.ArrayChangeInsert attribute)

 	(y_py.YTextChangeInsert attribute)

 	insert() (y_py.YArray method)

 	(y_py.YText method)

 	(y_py.YXmlText method)

 	
 	insert_embed() (y_py.YText method)

 	insert_range() (y_py.YArray method)

 	insert_xml_element() (y_py.YXmlElement method)

 	insert_xml_text() (y_py.YXmlElement method)

 	items() (y_py.YMap method)

K

 	
 	keys (y_py.YMapEvent attribute)

 	(y_py.YXmlElementEvent attribute)

 	(y_py.YXmlTextEvent attribute)

 	
 	keys() (y_py.YMap method)

M

 	
 	
 module

 	y_py

 	
 	move_range_to() (y_py.YArray method)

 	move_to() (y_py.YArray method)

N

 	
 	name (y_py.YXmlElement attribute)

 	newValue (y_py.YMapEventKeyChange attribute)

 	
 	next_sibling (y_py.YXmlElement attribute)

 	(y_py.YXmlText attribute)

O

 	
 	observe() (y_py.YArray method)

 	(y_py.YMap method)

 	(y_py.YText method)

 	(y_py.YXmlElement method)

 	(y_py.YXmlText method)

 	observe_after_transaction() (y_py.YDoc method)

 	
 	observe_deep() (y_py.YArray method)

 	(y_py.YMap method)

 	(y_py.YText method)

 	(y_py.YXmlElement method)

 	(y_py.YXmlText method)

 	oldValue (y_py.YMapEventKeyChange attribute)

P

 	
 	parent (y_py.YXmlElement attribute)

 	(y_py.YXmlText attribute)

 	path() (y_py.YArrayEvent method)

 	(y_py.YMapEvent method)

 	(y_py.YTextEvent method)

 	(y_py.YXmlElementEvent method)

 	(y_py.YXmlTextEvent method)

 	pop() (y_py.YMap method)

 	
 	prelim (y_py.YArray attribute)

 	(y_py.YMap attribute)

 	(y_py.YText attribute)

 	prev_sibling (y_py.YXmlElement attribute)

 	(y_py.YXmlText attribute)

 	push() (y_py.YXmlText method)

 	push_xml_element() (y_py.YXmlElement method)

 	push_xml_text() (y_py.YXmlElement method)

R

 	
 	remove_attribute() (y_py.YXmlElement method)

 	(y_py.YXmlText method)

 	
 	retain (y_py.ArrayChangeRetain attribute)

 	(y_py.YTextChangeRetain attribute)

S

 	
 	set() (y_py.YMap method)

 	set_attribute() (y_py.YXmlElement method)

 	(y_py.YXmlText method)

 	
 	state_vector_v1() (y_py.YTransaction method)

 	SubscriptionId (class in y_py)

T

 	
 	target (y_py.YArrayEvent attribute)

 	(y_py.YMapEvent attribute)

 	(y_py.YTextEvent attribute)

 	(y_py.YXmlElementEvent attribute)

 	(y_py.YXmlTextEvent attribute)

 	
 	to_json() (y_py.YArray method)

 	(y_py.YMap method)

 	(y_py.YText method)

 	transact() (y_py.YDoc method)

 	tree_walker() (y_py.YXmlElement method)

U

 	
 	unobserve() (y_py.YArray method)

 	(y_py.YMap method)

 	(y_py.YText method)

 	(y_py.YXmlElement method)

 	(y_py.YXmlText method)

 	
 	update() (y_py.YMap method)

V

 	
 	values() (y_py.YMap method)

X

 	
 	Xml (in module y_py)

Y

 	
 	
 y_py

 	module

 	YArray (class in y_py)

 	YArrayEvent (class in y_py)

 	YArrayObserver (in module y_py)

 	YDoc (class in y_py)

 	YDocUpdate (in module y_py)

 	YMap (class in y_py)

 	YMapEvent (class in y_py)

 	YMapEventKeyChange (class in y_py)

 	YMapItemsView (class in y_py)

 	YMapKeysView (class in y_py)

 	YMapValuesView (class in y_py)

 	
 	YText (class in y_py)

 	YTextChangeDelete (class in y_py)

 	YTextChangeInsert (class in y_py)

 	YTextChangeRetain (class in y_py)

 	YTextDelta (in module y_py)

 	YTextEvent (class in y_py)

 	YTransaction (class in y_py)

 	YXmlAttributes (in module y_py)

 	YXmlElement (class in y_py)

 	YXmlElementEvent (class in y_py)

 	YXmlText (class in y_py)

 	YXmlTextEvent (class in y_py)

 	YXmlTreeWalker (in module y_py)

wheels

 nav.xhtml

 Table of Contents

 		
 Ypy Documentation

 		
 Installation

 		
 Tutorial

 		
 API Reference

 		
 y_py

 		
 Module Contents

_static/plus.png

_static/file.png

_static/minus.png

